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FOREWORD

This effort was conducted under Contract N00123-78-C-1206 with the American

College Testing (ACT) Program within work unit ZF522.012.03.0l, Criterion-Referenced

Testing (CRT). The objective of this work unit is to develop and evaluate innovative CRT

techniques to alleviate some of the deficiencies and problems that exist with current

procedures used in the Navy training/testing community (e.g., item-writing methods, item

statistics, generalizing to the domain of performance, and computerized adaptive testing).

The purpose of the ACT effort was to investigate errors of measurement in criterion-

referenced, domain-referenced, and mastery testing. This effort has been conducted in

two phases. NPRDC TN 80-15 (Brennan, 1980a) reported on the first phase: The

development of a computer program to estimate error variances, variance components,

and indices of dependability. That technical note tells testing researchers how to run the

program, and how to interpret and use the results appropriately.

This technical note reports on the second phase: The development of a handbook of

some simple statistical techniques for producing and evaluating criterion and/or domain-

referenced test (DRTs) for Navy technical training. It is a "how-to-do-it" handbook for

use in developing and assessing CRTs and/or DRTs. Specifically, it considers item

analysis procedures, techniques for establishing cutting scores, errors of measurement and

classification, test length, and advancement scores, as well as group-based coefficients of

agreement.

This handbook is a working document intended for limited distribution to Center

personnel and peers in the scientific community. It is not a formal presentation of Center

research. Parts of it will be incorporated into a larger, more comprehensive testing

manual for achievement and diagnostic testing that is being produced by

NAVPERSRANDCEN for the Navy technical training community.

The contracting officer's technical representative was Pat-Anthony Federico.

RICHARD C. SORENSON
Director of Programs
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SUMMARY

Problem

Many of the statistical techniques that have been used for developing and evaluating

norm-referenced tests are not applicable to criterion-referenced tests (CRTs) and

* domain-referenced tests (DRTs) since the data from these later tests do not usually follow

the normal distribution. Further, CRTs and DRTs are not used to compare or rank

students against one another; rather, they are used to determine whether students have

met or exceeded mastery learning levels or absolute performance standards. Statistical

procedures are needed that can be easily employed by developers and evaluators of CRTs

and DRTs in the Navy.

Purpose

QThe purpose of this effort was to investigate errors of measurement in criterion-

referenced, domain-referenced, and mastery testing.

Approach

- A handbook of some statistical techniques for producing and evaluating DRTs was

created for Navy practitioners. This is a "how-to-do-it" guide for the intelligent layman

who develops and assesses DRTs and/or CRTs. This handbook considers item analysis

procedures, techniques for establishing cutting scores, errors of measurement and

classification, test length, and advancement scores, as well as group-based coefficients of

agreement. -

Results and Conclusions

No attempt was made to catalogue, list, or describe exhaustively a large number of

available procedures for a particular purpose. Rather, a few procedures were selected for

a single purpose based upon the principal investigator's judgment as to which are the best

techniques for that purpose. Simple numerical examples were used to illustrate

procedures, and guidelines were provided for using and/or interpreting results.

V



Future Direction

This handbook will be incorporated into a larger, more comprehensive testing manual

for achievement and diagnostic testing, which is being produced by NAVPERSRANDCEN

for the Navy technical training and testing community.
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1. Introduction

Almost twenty years ago, the term "criterion-referenced testing"

was introduced into the literature on educational measurement, and since

that time an enormous number of papers have been published that deal with

technical issues in this area. In no way does this handbook represent

an attempt to synthesize ill of this literature; rather, this handbook

treats a restricted set of statistical procedures for addressing some

of the most prevalent technical issues that arise in criterion-ref-

erenced testing, which is frequently called "domain-referenced test-

ing."

Throughout this handbook the term "domain-referenced" will be used in-

stead of "criterion-referenced" for two principal reasons. First, the

term "criterion-referenced" too readily suggests some external criterion

against which examinee performance on a test can be compared. There are

situations in which an external criterion exists and relevant data are

available. However, such situations are rare in this author's experience;

and, indeed, none of the procedures discussed in this handbook require

criterion data, in the usual sense of the word "criterion." Second,

in this handbook it is assumed that the items in a test can be viewed

as a sample from a larger universe of potential items that might have

been chosen for the test. It is natural to refer to this universe as

a domain--hence, the term "domain-referenced."
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In domain-referenced testing, the examinee's score of principal

interest is the examinee's score over all items in the universe of items.

This score can never be obtained directly, but it can be estimated by,

for example, the examinee's observed score on a set of items, or test.

Also, in domain-referenced testing, the interpretation of an examinee's

score is not based on the scores obtained by other examinees. In a sense,

therefore, the phrase "domain-referenced testing" is itself something

of a misnomer, because what is of principal interest is domain-referenced

interpretat-ions of examinee scores. Such interpretations are frequently con-

trasted with norm-referenced interpretations that involve comparing the perfor-

mance of an examinee relative to the performance of other examinees.

To put it another way, even highly qualified experts would have

great difficulty distinguishing between a norm-referenced and a domain-

referenced test, per se; and the procedures for administering and scor-

ing domain-referenced and norm-referenced tests seldom differ much at

all. What is different is the interpretations given to the

resulting scores, and the procedures employed to study the quality of

these interpretations. Indeed, in principle, scores on any test can be

given either domain-referenced or norm-referenced interpretations, al-

though this is rarely done.

Actually, one can distinguish between two types of domain-referenced

interpretations. One interpretation rests on using an examinee's ob-

served score on a test as an estimate of his/her universe score. The
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other interpretation involves comparing an examinee's score to some

fixed cutting score that is defined independently of examineee test

scores. This latter type of interpretation is frequently associated

with mastery/non-mastery decisions.

The procedures discussed in this handbook do not necessarily repre-

sent the most technically sophistocated procedures available. Indeed, the

procedures discussed here have been chosen, in large part, because they

do not necessitate extensive computations, even though the theoretical

foundation for some of these procedures is highly technical. Also, no

claim is made that the procedures discussed in this handbook treat all

relevant issues iii domain-referenced testing, although they do cover those

issues most frequently discussed. The general intent is simply to pro-

vide practitioners with a unified treatment of some relatively straight-

forward statistical procedures for use in domain-referenced testing.

Sample Statistics

In this handbook all computational formulas and procedures are

provided in tables that include examples employing synthetic data. In

every case, the computations involve nothing more mathematically compli-

cated than computing sample means, variances, and standard deviations,

and then combining these quantities in various ways.

It is assumed here that the reader is already at least partially

familiar with the concepts of a mean, variance, and standard deviation.

In a certain statistical sense, a mean is a single number (an average

value, or a "central" value) that represents an entire set of scores,
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while variance and standard deviation are convenient measures of the

amount of spread, or dispersion, in a set of scores.

Table 1.1 provides formulas for calculating the sample statistics

used in this handbook. To give the statistics in Table 1.1 a concrete

interpretation, the formulas for them are expressed with respect to a

person's mean score, or proportion of items correct (number of items

answered correctly divided by the total number of items). In this

handbook, a person's mean score is represented x , where the "bar"
p

over the variable x signifies a mean score, and the subscript p sig-

nifies a particular person. Specifically, if there are n items and

XPi represents the score for the person p on item i, then the mean score

for person P is xp = Xpi /n, where E. means "the sum over items."

If one wanted to express these sample statistics in terms of a

person's total score on a test, then the symbol x (without a bar)
P

would be used. Also, it should be noted that what is important is

the form of the equations in Table 1.1--not the fact that they are

expressed in terms of a variable x. The same form would apply if the

variable were labelled y, as is the case in one section of this handbook.

In Table 1.1 two formulas are provided for sample variance--one
2-2

that uses the symbol s , and one that used the symbol 2 . The latter

is easily obtained from the former, and in almost all cases these two

statistics will have very similar (but not identical) values. In cer-

2 ^2tain sections of this handbook, s is used, and in other sections s

is used.
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However, as far as this handbook is concerned, the sole reason for

choosing between s and s is to provide the simplest possible computa-

tional procedures for estimating quantities of interest. (A similar

statement holds for the corresponding standard deviations, s and s.)

It was mentioned, above, that a standard deviation is a measure of

the amount of spread or dispersion in a set of scores. To give the con-

cept of a standard deviation a more concrete interpretation, it is common

practice to consider the standard deviation of a particular bell-shaped

distribution of scores, called a normal distribution. As illustrated

in Figure 1.1, for a normal distribution: (a) 68% of the scores lie

within one standard deviation to the right and left of the mean; and (b)

95% of the scores lie within two standard deviations to the right and

left of the mean. These two statements also can be expressed in terms

of what are called "z-scores."

As indicated in Figure 1.1, a score that lies one standard deviation

above the mean can be denoted z = 1; and, a score that lies one standard

deviation below the mean can be denoted z = -1. It follows that, for

a normal distribution, 68% of the scores lie between z = -1 and z = 1.

Similarly, 95% of the scores lie between z = -2 and z = 2.

The above statements about percent of cases between specified z-scores

do not apply to all possible distributions of scores. However, provided

one does not interpret such statements too literally, they can properly

serve as useful bench marks for conceptualizing the interpretation of a

standard deviation.
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34% 34%

13.5% 13.5%
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68%

95%

Figure 1.1. Normal Distribution
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The reader is cautioned not to infer from the above paragraphs that

test scores are usually (or should be) normally distributed. Indeed,

for domain-referenced tests, it is quite common to have many high-scor-

ing examinees and relatively few low-scoring examinees; and such a dis-

tribution is not normal. For this reason, most procedures treated in this

handbook involve no assumption about the shape of the score distribution.

Universe of Items

A universe of items is a concept of central importance for domain-

referenced interpretations, because ultimately one wants to make inferences

about examinee universe, or domain, scores. (Considerations with respect

to a universe of items are prominent in some approaches to norm-referenced

interpretations, too, but norm-referenced interpretations are not within

the scope of this handbook.)

Sometimes there actually exists a set of items that can be considered

as the intended universe. For example, some computer-managed instruction

systems have a large bank of items that is used to construct specific

tests. Also, the words in a specified dictionary might constitute a

universe for a spelling domain.

More frequently, however, pragmatic concerns require that one concept-

ualize a universe of items for the content under consideration. For example,

in the initial stages of developing a domain-referenced testing system,

it is likely that only a limited number of items will be available. Fur-

thermore, for many content areas, it would be virtually impossible to

construct all relevant items, or even a large proportion of such items.
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In such cases, it is especially important that the intended universe be

defined and described in as clear and unambiguous a manner as possible.

Otherwise, one cannot easily claim that a particular item does, or does

not, reference the intended domain; nor can one clearly specify what an

examinee's universe score means.

No matter how a universe may be defined, in this handbook a test

is viewed as a sample of items from an intended universe. More specif-

ically, to be technically correct, we ought to say that a test is a random

sample of items from the universe, in the sense that every item in the

universe has an equal chance of appearing in any test. In practice, one

seldom has the opportunity to randomly select a sample of items, in the

literal sense of the word "randomly." However, if a universe is defined

well enough, then one can usually ensure that a test consists of a reason-

ably representative sample of items from the intended universe.

It can be argued that for every objective in a program or instruc-

tional sequence, there ought to be a distinct universe of items. It is

not uncommon, however, for a test to reference a universe that might be

viewed as stratified, in the sense that the universe is defined by multiple

objectives or the multiple categories in a table of specifications or

task-content matrix. The procedures discussed in this handbook do not

specifically incorporate considerations with respect to a universe defined

in this manner, even though these procedures (or similar ones) are some-

times used with such universes.
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Overview

No matter how well-defined a universe of items may be, the quality

of the decisions made can be no higher than the quality of the items

themselves. Therefore, Section 2 considers some simple item analysis

procedures for using data to help identify items that may be flawed. This

topic is rather mundane, and the process of performing item analyses is

tedious; but, in this author's opinion the validity of a domain-referenced

measurement procedure absolutely necessitates using good items that repre-

sent a well-defined universe of items. Furthermore, no after-the-fact

statistical analysis of examinee test scores can overcome the negative

impact of poor items on the quality of domain-referenced interpretations.

Section 3 considers a rather simple procedure for establishing a

cutting score, 7r , expressed as a proportion of items correct for the0

universe of items. (In this handbook the Greek letter w is used to repre-

sent a score for the universe of items, whereas x is used for a score on

a test, or sample of items from the universe.) This procedure is "content-

based" in the sense that it relies upon the subjective (but, hopefully,

well-informed) judgments of content-matter specialists.

Section 4 treats a procedure for establishing an advancement score.

Recall that a cutting score, wr , is expressed as a proportion of items0

correct for the universe of items; and, as such, ir is "similar" to an
0

examinee's universe score, w, in the sense that both w and R reference
t

the same universe of items. By contrast, an advancement score, x., is
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"similar" to an examinee's observed score, x, in the sense that both

reference a test score. To put it another way, an advancement score is

an observed score analogue of a cutting score, just as an examinee's test

score is an observed score analogue of his/her universe score. A decision

concerning mastery is actually made with respect to the advancement score;

i.e., an examinee is declared a master if his/her observed score is at

or above the advancement score.

Section 5 considers two types of error that can be made when a

decision about an examinee is based on the examinee's observed score

rather than his/her universe score (which is never known). These two

types of error are called error of measurement and error of classifi-

cation. Error of measurement involves the extent to which examinee ob-

served and universe scores differ; and, as such, error of measurement

does not involve consideration of a cutting score. By contrast, an

error of classification is made if an examinee is erroneously classified

as a master or erroneously classitied as a non-master.

Section 6 considers a number of issues associated with assessing

the quality of domain-referenced measurement procedures for a group of

examinees. These issues are, in part, related to traditional notions

of reliability (or measurement c:onsistency). Also, to an extent, these

issues have a validity connotation, because in domain-referenced test-

ing, examinee universe scores are a principal "criterion" of interest.

However, the terms "reliability" and "validity" are used only infre-

quently in Section 6 because they too easily connote traditional statis-

tical analyses (for norm-referenced interpretations) that are inappropriate
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in domain-referenced measurement contexts. Rather, emphasis is placed

upon certain agreement coefficients and group-based measures of error.

Restrictions in Scope and Content

Domain-referenced measurement is currently a topic of considerable

interest in numerous applied settings, and a handbook such as this

cannot treat all relevant issues in all such settings. In particular,

there are many important educational, philosophical, legal, ethical,

and technical issues involved in testing for licensure, certification,

"minimal" competency, etc. For the most part, such issues are not treated

here; rather emphasis is placed upon procedures that seem to this author

to be both theoretically reasonable and capable of being used relatively

easily by practitioners--especially practitioners in instructional and

training environments where nothing more sophisticated than a simple

hand-held calculator may be available.

Throughout this handbook it is assumed that examinee responses are

not corrected for guessing. In several cases, the procedures discussed

could be (or have been) modified in various ways to take guessing into

account. Such modifications are not treated here for three reasons.

First, many such modifications make assumptions about guessing that the

author believes are unrealistic. Second, reasonable assumptions about

guessing involve complexities considerably beyond the scope of this

handbook. Third, it remains to be seen (in a research sense) whether

or not procedures involving reasonable assumptions about guessing mater-

ially improve the quality of decisions made in typical domain-referenced

testing situations.



In the field of statistics, distinctions are carefully drawn between

quantities of principal interest, called parameters, and estimates of

these quantities, called statistics. For theoretical work, this distinc-

tion is crucial, but to incorporate this distinction in the body of this

handbook would necessitate a much more complicated notational system,

as well as considerably more complex verbal statements. Therefore, the

term "statistic" is used in this handbook in a generic sense (even though

occasionally the word "parameter" would be better, technically), and there

is no notational distinction drawn between parameters and estimates.

Also, both quantities of principal interest and their estimates are

usually denoted with Greek letters to distinguish them from the sample

statistics discussed in conjunction with Table 1.1. Finally, concerning

notational conventions, sometimes a symbol is underlined in the text for

emphasis and/or to preclude mistaking it for part of a word or phrase.

The body of this handbook does not contain references to published

work, proofs of formulas and equations, or justifications for choosing the

procedures treated here rather than others which might have been chosen.

However, to a limited extent, these issues are treated in Appendix B,

which is provided principally for the technically oriented reader. It

will be evident to such a reader that, in several cases, the treatments

of procedures in the body of the handbook are slight modifications of

procedures discussed in published literature. Such modifications were

made principally for computational convenience. Furthermore, in a few

instances procedures are presented, or suggestions are made, that have

not been considered previously in published literature.



14

2. Item Analysis Considerations

In domain-referenced testing (or any type of testing, for that

matter) there is no substitute for good items. No statistical proce-

dure can overcome the negative effect of poor test items; but as dis-

cussed in this section, statistics can be used to help identify poor items.

First, however, it must be emphasized that, prior to collecting any

data, every effort must be made to insure that items reflect the objec-

tives they are intended to measure and that the items have no obvious

technical flaws. Such judgments are best made by content matter special-

ists who have knowledge of item construction procedures and guidelines.

If content-matter specialists do not have such knowledge then they

should be aided in their judgments by someone who does. Also, items

should be reviewed for potential bias by members of minority groups,

especially when domain-referenced tests are to be used with members

of minority groups.

Item Analysis Table and Statistics

No matter how thoroughly content matter experts scrutinize items

to eliminate flaws, it is always advisable to study examinee responses

to items. Such data provide an additional check on item quality. Usually

such data are displayed in the form of an item analysis table such as

that provided in Table 2.1.

To give a context to the synthetic data in Table 2.1, let us assume

that 10 items were administered to 50 examinees, and one of these items



15

Table 2.1

Illustration of an

Item Analysis Table and Statistics

Using Synthetic Data

Subgroup

Low Medium High
Alternative (0-6) (7-8) (9-10) Total p B

a 3 1 2 6 .14 -.13

8 9 16 33 .75 .18

c 2 1 1 4 .09 -.10

d 0 0 0 0 .00 .00

Omit 0 0 1 1 .02 .05

Not Reached 3 3 0 6 ....

Total 16 14 20 50

Total minus
Not Reached 13 11 20 44 ....

(proportion of examinees who choose]

(2.1) p = [alternative (or omitted item)

proportion of examinees1 proportion of examinees1

(2.2) B = in high group who choose I  _ in low group who choose
alternative (or omitted alternative (or omitted

-item) J Litem)

e.g. For the correct alternative, b,

p - 33/44 = .75

b = (16/20) - (8/13) = .80 - .62 = .18

a Numbers within parentheses indicate the scores (in terms of number

of items correct) that fall into each group.

Note. * indicates the correct (keyed) alternative.
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resulted in the data in Table 2.1. Table 2.1 indicates that this item

contains four alternatives with the correct (or keyed) alternative being

b (the alternative that is starred). Note that the other alternatives

(namely a, 2, and d) are sometimes called distractors, or incorrect

alternatives.

To study examinee performance on an item, it is usual to classify

the examinees into groups based on their test performance. In Table

2.1 this has been accomplished by assigning each examinee to: (a) a

"low" group if he/she has 0 - 6 items correct; (b) a "medium" group if

he/she has 7 - 8 items correct; or (c) a "high" group if he/she has

9 - 10 items correct. For present purposes, the reader can assume that

examinees in the high group would be judged "successful," those in the

low group would be j-Aoed "unsuccessful," and those in the middle group

might (or might not) be judged "successful."

The entries under the columns headed low, medium, and high are the

numbers of examinees in each group who chose each alternative, omitted

the item, or did not reach the item. The following procedure can be used

to distinguish between an item that was omitted (but attempted) by an

examinee and one that was not reached (and unattempted): (a) if an

examinee omitted the last item, assume that the examinee did not reach

one item; (b) if the examinee omitted both of the last two items assume

that two items were not reached by the examinee; (c) if the examinee

omitted all three of the last three items, assume that three items were
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not reached; etc. All other blank responses by an examinee can be treated

as "omits."

Table 2.1 also includes column totals indicating the total number of

examinees in each group, and the number of examinees in each group who

reached the item. The row totals in Table 2.1 indicate the total number of

examinees who picked each alternative, omitted the item, or did not reach

the item. Finally, for each alternative, Table 2.1 provides two statistics

which are identified as p and B and defined in Equations 2.1 and 2.2, respec-

tively. The statistic p will always have a value between 0 and 1, and B

will always be between -1 and +1.

The statistic p indicates the proportion of examinees who chose an

alternative. For the correct alternative p is called the item difficulty

level, and it is the proportion of examinees who got the item correct. In

Table 2.1, p = .75 for the correct alternative. Note that easy items have

high difficulty levels and hard items have low difficulty levels.

The statistic B indicates the difference between the proportions of

examinees in the high and low groups who chose an alternative. For the

correct alternative, B is called an item discrimination index. It reflects

the difference between the proportion of examinees in the high group who

got the item correct and the proportion in the low group who got the item

correct.

U Item Analysis Data

The principal use of item analysis data in domain-referenced testing

situations is to detect flawed items. It must be understood, however, that

such data--no matter how carefully anaiyzed--do not provide an absolute
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indication that an item is or is not flawed. Also, if an item is flawed,

the data cannot tell the investigator exactly how to correct the flaw.

What the data can do is flag a potentially flawed item and usually sug-

gest the nature of the problem and/or the part of the item that is flawed.

Given this perspective, the following paragraphs provide some guidelines

for examining item analysis data.

(a) Have an actual copy of the item available when examining an

item analysis table like that in Table 2.1.

(b) Look at p for the correct alternative. The item may be flawed

if the item difficulty level, p, is considerably out of line with a value

one might expect. (Usually, in domain-referenced testing items have rel-

atively high difficulty levels if they are obtained for a group of exam-

inees who have experienced instruction in the content tested.)

(c) Look at the relationship between item difficulty level and the

p values for the distractors. If a distractor has a value for p that

is above the item difficulty level, then, examine the distractor to see if

in fact it could be considered, reasonably, as a correct answer. If so,

one of three problems probably exist--the correct answer was mis-specified,

the item has two or more correct answers, or the item is ambiguous. In any

case, the item requires revision.

(d) If p is very small for any distractor (e.g., alternative d in

Table 2.1) consider eliminating it or replacing it with some other incor-

rect alternative--provided doing so does not change the intended nature of

the item. (Recall that if an item is inherently easy, it is very likely

that one or more distractors will be chosen infrequently.)
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(e) Look at the item discrimination index (the value of B for the

correct alternative). It is very unlikely that a good item would have

a value for B that is noticeably negative, because that would mean that

a greater proportion of the low-scoring group got the item correct than

the high-scoring group. Therefore, if B is noticeably negative (say,

less than -.20) examine the item carefully, checking especially to see

that the item was scored correctly, that it is unambiguous, and that

the indicated correct answer is indeed correct.

(f) Look at the values of B for the distractors. If any of them

are noticeably positive (say, above .20), check the item to see if it

is ambiguous, or if the distractor could possibly be a correct answer.

(g) If either p or B for "omits" is noticeably positive, examine the

item for ambiguities. It is assumed, here, that examinees are not being

penalized for guessing and, therefore, there is no extrinsic motivation

for an examinee not to pick an alternative.

(h) Consider the number of examinees (especially high-scoring

examinees) who did not reach the item. If many examinees did not reach

it, (e.g., see Table 2.1) the item may be all right, but it is likely that

examinees were not allowed enough time when they were tested. Unless

a domain-referenced test is intended to be speeded, examinees should
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have a reasonable amount of testing time. Otherwise, the examinees'

scores will not adequately reflect their ability.

The above suggestions should be regarded as reasonable "rules-of-

thumb"--not dogmatic directives. No such rules, and no amount of item

analysis data, absolve item developers and investigators from employing

common sense and good judgment based on experience and content-matter

knowledge.

Other Considerations

In norm-referenced testing contexts it is not uncommon for items

to be discarded or revised if the value of a discrimination index is

positive but small. This criterion should not be used in domain-ref-

erenced testing contexts. Indeed, frequently in such contexts many

good items are virtually guaranteed to have positive but small values

for a discrimination index. Also, in norm-referenced testing contexts

a high discrimination index is frequently viewed almost as an indicator

of an ideal item. This perspective should not be taken in domain-ref-

erenced testing contexts--at least not in the sense that highly discrim-

inating items are preferred over moderately discriminating ones. In domain-

referenced testing situations, emphasis is placed upon content, and discrim-

ination indices should be used solely as an aid in identifying flawed items--

not a basis for classifying items into degrees of quality.

In an ideal world, all items in the universe would undergo item

analysis before any decisions were made about examinees based on any



items in the universe. This ideal is seldom feasible in practice.

Even so, no item should be used as a basis for making decisions

about examinees until it has been subjected to an item analysis. To

address this issue the following procedure can be used. First, in the

initial stages of developing a universe of items, prior to using the

items for decision-making, a reasonably large sample of them should

undergo item analysis using a representative group of examinees. Items

that do not successfully clear this hurdle should be discarded or revised.

Second, to qather item analysis data on other available items, or items

subsequently developed, one can inclade a small number of them in opera-

tional versions of domain-referenced tests. However, examinee scores

* on any such additional item should not be used as part of the examinee

total scores for decision-making--at least not until the item analysis

data have been studied to verify that the item has no obvious flaws.

If the above approach is taken of including new items with old items

in a domain-referenced test, then it is important that the investigator

not confuse the total number of "scored items" (those not undergoing item

analysis) and the total number of items physically in the test. Else-

where in this handbook, when test length, n, is discussed it is always

assumed that n is the total number of items excluding those (if any)

undergoing item analysis.

As discussed above, conducting an item analysis usually involves

classifying examinees into groups based on total test score. If new
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items are included with old items, then total test score should be based

on the old iters only. Of course, i. the initial stages of construct-

ing a universe, or pool of items, total test score will have to be based

on new items only. In either case, the investigator must choose a range

of scores associated with each group. Seldom can this decision be made

in a completely unambiguous manner, because a firm basis for this deci-

sion would necessitate information that is seldom available at the time

the decision needs to be made. For example, in initial stages of uni-

verse construction, a cutting score may not have been firmly established.

Furthermore, as will be discussed later, even under the best of circum-

s.ances, it is impossible to assign examinees to groups in a manner

that is guaranteed to be completely devoid of error. Even so, for

item analysis purposes a firm basis for assigning examinees to groups

is not absolutely necessary--good informed judgment based on experience

is generally sufficient.

The above discussion of item analysis procedures has been couched

in terms of multiple-choice items. For free-response items the procedure

and guidelines are essentially the same. The principal differences are

that: (a) a free-response item can be viewed as an item with two alter-

natives--correct and incorrect; and (b) the investigator needs to study

all examinee responses to make sure that all correct responses have been

identified.
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3. Establishing a Cutting Score

One of the initial tasks typically encountered by an investigator

in a domain-referenced testing environment is to establish a cutting

score, i , expressed as a proportion of items correct for the universe

of items. Of course, n is not required if mastery type decisions are
0

not going to be made and interest is restricted to estimating an exam-

inee's universe score. However, in most domain-referenced testing

situations, mastery type decisions are made and, consequently, a cutting

score is required.

On rare occasions there is a known relationship between examinee

performance on the universe of items (or a large part of the universe)

and some external criterion such as on-the-job performance or perfor-

mance in some subsequent level of instruction. Such data are indeed

rare, however, because they are usually very difficult to obtain. For

example, if some measure of on-the-job performance is viewed as a crite-

rion, then one would have to take the following steps to obtain the

data required to use such performance as a basis for establishing a

cutting score: (a) test a representative group of examinees using a

large number of items from the universe; (b) allow all these examinees,

including those with low scores, to undertake the job under considera-

tion; and (c) evaluate the performance of each of these examinees on the

job. Three problems are usually encountered in attempting to carry out

these steps. First, these steps are usually time-consuming and expensive.
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Second, it is frequently considered undesirable (arid -;ometilnes

ethically unacceptable) to allow low-scoring examinees to under-

take the job in question. And third, usually the evaluation of

on-the-job performance is both difficult and subject to consid-

erable error.

For these reasons, among others, external criteria are seldom used

(at least directly) in the process of establishing a cutting score for

domain-referenced testing purposes. Rather, it is common for a cutting

score to be defined based upon the judgments of raters, judges, or experts

who are content matter specialists. Of course, such judgments are likely

(indeed hopefully) to be influenced by raters' knowledge about potential

external criteria and about how persons generally perform on such crite-

ria. However, such information is not usually quantified directly.

Rather several procedures exist for eliciting from raters their beliefs

about how minimally competent persons would perform on the universe of

items, the argument being that such judgments provide a basis for estab-

lishing a cutting score w that separates mastery (or probably accept-0

able performance) from non-mastery (or probably unacceptable performance).

Procedure

In one procedure for establishing a cutting score, each of a set of



raters, judges, or content matter specialists is asked to provide an inde-

pendent assessment of the probability that a minimally competent examinee

would get each item correct. The average probability over raters and

items (called y below) is frequently used as the cutting score n
0

and various statistics can be calculated to assess how variable this

average probability would be if the study were replciated a large num-

ber of times. Knowledge about such variability is important in reveal-

ing the extent to which raters agree in their judgments about what

cutting scores should actually be established.

Using this procedure data are collected in the following

manner:

(a) A group of t raters, and a sample of m items from the universe,

are identified where t and m are as large as time and other constraints

will allow;

(b) Each rater is told to provide, for each item, a probability

reflecting that rater's belief about the likelihood that a minimally

competent examinee would get that item correct;

(c) Items are presented to each rater in a random order--the

important point being that the items are ordered differently for each

rater;

(d) Each rater works independently of every other rater (i.e.,

raters do not discuss their judgments with each other); and

(d) Raters are told to report their probabilities in units of

1/10 (i.e., the probabilities that might be assigned are 0.0, 0.1,

0.2, ., 1.0).
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Table 3.1 reports a set of data that might result from such a study

with t = 5 raters and m 20 items. These numbers are relatively small

solely for the purpose of simplifying subsequent illustration of com-

putations. An entry in the body of Table 3.1 is denoted yr ' the prob-

ability assigned by a rater r to an item i. (The symbol y is used here

to distinguish these probabilities from examinee scores on a test, which

are later denoted with the symbol x.) Along with the probabilities,

Table 3.1 reports means, variances, and standard deviations. For example,

(a) an entry in the row labeled y is the mean probability assigned

to items by rater r, and s(yr ) = .083 is the standard deviation (across

raters) of these rater mean probabilities;

(b) an entry in the column headed yi is the mean probability assigned

to item i, and s(Y.) - .086 is the standard deviation (across items) of

these item mean probabilities;

(c) an entry in the row labeled s(y ri) is the standard deviation

of the probabilities assigned to items by rater r; and

(d) y = .80 is the mean probability over all 20 items and all

5 raters.

In a cutting score study, interest is usually focused principally

on y and y. We may call yr the "cutting score assigned by rater r"

because it reflects that rater's belief about the proportion of items

that a minimally competent examinee would get correct. Similarly,

we may call y the "study cutting score," and as such it is, in a cer-

tain statistical sense, the best value to choose for w .
0
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It is evident from the values of y in Table 3.1 that Raters 1, 3,

and 4 are in reasonably close agreement concerning choice of a cutting

score, but Rater 2 thinks the cutting score should be higher than 0.80

and Rater 5 thinks it should be considerably lower than 0.80. This

disagreement among raters is reflected in the quantity s(yr) = .083.

Such disagreement is not unusual and probably should be expected because

even well-qualified raters may have different opinions about minimal

competence and/or the relationships between minimal competence and the

items used in the study. Indeed, one purpose of a cutting score study

is to reveal such differences of opinion in a systematic and objective

manner.

Variability in Study Cutting Scores

For the purpose of examining variability in y , s(y r) is rele-

vant but not actually the quantity of principal interest. Rather,

one would ideally like to know how variable y would be if the study were

replicated (under similar conditions) a large number of times. Let us

describe this variability in y in terms of a standard deviation and

identify it as a(y). Clearly, if G(y) were small, then, even if raters

disagreed to some extent concerning the cutting score resulting from a

single study, such disagreement would not seriously impact one's confi-

dence in using y as a cutting score. However, if o(y) were large, then

one might want to keep this fact in mind when making decisions based

on y.
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Even though there is typically only one cutting score study avail-

able, it is still possible to estimate the standard deviation of y that

would result if the study were replicated a large number of times.

Table 3.2 reports three such estimates along with their numerical values

for the data in Table 3.1. These three estimates are similar in that

each of them assumes that each (hypothetical) replicated study involves

a different sample of t raters (t=5 in Table 3.1) and a different sample

of items. As described below, the three estimates differ with respect

to the number of items involved in each replicated study: Equation 3.1

in Table 3.2 would be appropriate if an investigator wanted to consider

(hypothetical) replicated studies involving m items--the same number of

items used in the actual cutting score study. Under this circumstance,

Table 3.2 shows that a(y) = .041 for the data in Table 3.1. If, however,

an investigator wanted o(y) over replicated studies involving n items--

a number different from (usually smaller than) m, then the appropriate

estimate would be obtained from Equation 3.2 in Table 3. For example,

given the synthetic data and a test length of n=lO items, Table 3.2

shows that a(y) = .045.

A third estimate of a(y) is obtained by assuming that replicated

studies would each involve rating all items in the universe. Under

this circumstance, the appropriate estimate of o(y) is Equation 3.3

in Table 3.2; and for the synthetic data o(y) 0.036. This value

is less than either of the other two estimates of a(y) because o(y)

decreases as the number of items increases.
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Any one of these estimates might be of interest to an investigator;

however, the third estimate is especially relevant for many (if not most)

domain-referenced testing situations. Recall that a cutting score is

defined as a proportion of items correct for the universe of items.

It follows that ideally one would like to have each rater rate every

item in the universe to obtain each of the "rater cutting scores." It

is almost always impossible to obtain such data directly, but even so

Equation 3.3 allows us to estimate o(y) under this circumstance. This

equation is also appropriate if the rating procedure is followed for all

items that occur in each and every form of a domain-referenced test.

One particular use of a(y) in Equation 3.3 is in establishing a

confidence interval for the cutting score. For example if one goes

one standard deviation to the right and left of y , then one obtains

a 68% confidence interval for the cutting score fT . For the synthetic0

data this interval extends from

y - a(y) = .800 - .036 .76

to y + 0(y) = .800 + .036 .84,

and this interval is represented (.76, .84). In words, we can say

that if the cutting score study were replicated a large number of times

(each time using all. items in the universe), about 68% of the time we

would expect to obtain values of y between .76 and .84.

Given these data, therefore, in a certain statistical sense

y = .80 is the best single number (proportion of items correct) to use as

a cutting score, rt ; however, an investigator is well advised to enter-0

tain some uncertainty about whether or not this value for U is "correct"
0

in some absolute sense. Also, as will be indicated in Section 4
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for some purposes, procedures are available that employ what is called

an "indifference zone" for the cutting score iT ; and the confidenceo

interval discussed above can be helpful in picking an indifference

zone.

Other Considerations

One factor that can contribute greatly to differences among raters

in their y values is differential ideas about what constitutes minimal

performance. Any definition of minimal competence is almost always

a matter of judgment (packing a parachute may be an exception!), but

very disparate notions about minimal competance can render a cutting

score study of relatively little value. At the same time, however,

the raters themselves should be well qualified to define what minimal

competence is, or at least to have a voice in any such definition.

In particular, it is very difficult, if not impossible, for raters to

participate in a cutting score study using someone else's definition

of minimum competence. For these reasons, it is advised that raters

have the opportunity to discuss their possibly different notions about

minimal competence prior to conducting the actual study. Hopefully,

they can reach some consensus or at least mitigate their differences of

opinion in a mutually acceptable manner.

Another issue to be considered is the manner in which items are

provided to raters--specifically, are the answers provided along with

the items? All things considered, it is probably best that answers
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be supplied. In doing so, one can obtain an additional check on

thc correctness of the indicated answers, and raters are probably

more likely to pay careful attention to each item individually. Assum-

ing that the answers are supplied, each rater should be directed to

indicate any items that he/she judges to be keyed incorrectly. If

it is determined after the raters complete their task that an item is

keyed incorrectly, it (and the probabilities assigned to it) should

be eliminated from the study, and the item should be revised or dis-

carded. If, on the other hand, it is determined after careful consid-

eration that a rater said an item was keyed incorrectly, but actually

it was keyed correctly, then that rater's judgment (i.e., assigned

probability) for that item should be eliminated in determining y.

This can happen-- each individual rater is not infallible, even in

his/her area of expertise.

Table 3.1 illustrates the rather common occurrence of one rater

(in this case Rater 5) providing judgments that are markedly different

from the judgments provided by other raters. Even so (assuming all

raters were chosen carefully in the first place), an atypical rater

should not be eliminated from the study unless there is an obvious

reason (e.g., sickness) for that rater's atypical judgments. If such

a reason exists, then all statistics should be re-calculated based on the

reduced set of raters. [For example, if Rater 5 were eliminated from

the synthetic data, then the reader can verify that y = .835; S(yr) = .031;

and, using Equation 3.3, o(y) .021.]
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One modification of (or addition to) this procedure for establish-

ing a cutting score involves having the raters, as a group, provide

a consensus probability for each item after they have independently

provided their judgments about each item. Then the mean of these con-

sensus probabilities is used as the cutting score. If this modification

is employed, the resulting data should be examined very carefully to en-

sure that no single rater is exerting undue influence over the judg-

ments of other raters. (Also, if this modification is used one should

keep in mind that forced consensus is not really agreement, although

forced consensus can effectively hide disagreement.)

f2
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4. Establishing an Advancement Score

When domain-referenced testing is employed to make mastery/non-

mastery types of decisions, it is necessary to consider a cutting score,

n but, in addition, the investigator must specify an observable score,

x , such that an examinee who gets x or more items correct will be
o 0

declared a master; and an examinee who gets fewer than x items correct
0

will be declared a non-master. This score is called an advancement

score, with the symbol x referring to the advancement score in terms
0

of number of items correct and (later) the symbol c referring to the
0

advancement score in terms of proportion of items correct.

In principle, one wants to pass, or advance, an examinee if that

examinee's universe score, n , is equal to or greater than the cutting
p

score, R . However, one cannot directly use such a decision rule be-
0

cause a specific domain-referenced test will consist of only a sample

of items from the universe. Based on any sample of items, an examinee's

observed mean score, x , can be calculated. but not the examinee's uni-
p

verse score, w . Furthermore, the cutting score, ir , may not correspond

with a possible observed mean score for test of n items. (For example,

if n = 10, then no proportion of items correct will correspond with a

cutting score of .85.)

Let us suppose that, as a result of some cutting score study, Rx0

is specified to be .80, and let us assume that a test will consist

of n = 10 items. Since .80 x 10 8, an investigator might decide that

the advancement score should be:
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x = 8 in terms of number of items correct; or
0

c xo/n

= 8/10

.80 in terms of proportion of items correct.

In this example, choosing x to be eight items correct may appear rea-
0

sonable and, indeed, this particular advancement score may be a good

choice in some particular context. However, the "logic" presented above

for choosing an advancement score is rather superficial. For example,

this logic does not take into account the fact that an observed score

may be, and usually is, different from a universe score. As will be-

come evident later, a more thorough analysis could lead to choosing

some advancement score other than x = 8.
0

The purpose of this section is to provide a reasonably sound,

yet relatively simple, table-look-up procedure for choosing an advance-

ment score. Even though this procedure is quite simple compared

to others that might be used, it does involve consideration of several

technical issues. Specifically, to use this procedure, one must first

specify a test length, a loss ratio, and an indifference zone. These

issues are discussed below, followed by an illustration of how to use

the table look-up-procedure.
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Related Issues

Sometimes, choosing a test length (n) is a more difficult problem

than it may appear to be at first glance. All other things being equal,

longer tests are to be preferred over shorter tests, because longer

tests reduce certain types of errors (discussed more fully later).

Also, longer tests are more valid in the sense that they provide a more

thorough representation of the intended universe of items. At the same

time, however, in domain-referenced testing environments, factors such

as available testing time frequently make it very difficult and/or costly

to use tests that are very long. For now, it will be assumed that there

already exists some reasonable basis for choosing a particular test

length, at least for the initial form(s) of a domain-referenced test.

In subsequent sections, as different concepts and procedures are devel-

oped, it will be possible to identify some reasonable statistics to

consider in choosing, or modifying, test length.

Classification errors and loss ratio. The concept of a loss ratio

involves a consideration of errors that can be made in classifying

an examinee as a passing examinee (master) or a failing examineee (non-

master). Specifically, there are two classification errors that can

be made:

(a) a false positive error occurs if an examinee is declared a master

(i.e., advanced) who has a universe score below vi; and

(b) a false negative error occurs if an examinee is declared a non-

master (i.e., not advanced) who hasa universe score above ir0
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These two classification errors are considered more fully in Section

5 in the context of decisions about individual examinees. Here, our

concern is with a certain kind of judgment about false positive and

false negative errors. Specifically, in this handbook the term "loss

ratio" refers to a number reflecting judgment about the seriousness

of a false positive error compared to the seriousness of a false nega-

tive error. For example, if false positive errors were judged to be

twice as serious as false negative errors, then the loss ratio would be

two; and, if both types of classification errors were equally serious,

then the loss ratio would be one.

By definition, the specification of a loss ratio involves sub-

jective judgment on the part of a person (or persons) intimately famil-

iar with the testing context. In making this judgment one needs to

consider the consequences of inappropriately passing or inappropriately

failing an examinee. For example, in many domain-referenced testing

contexts, it is frequently argued that an examinee who is inappropri-

ately advanced (false positive error) is likely to be unsuccessful

on-the-job or in subsequent instruction; and, this type of error is

judged more serious than the time and cost involved in inappropriately

re-cycling an examinee through an instructional sequence (false nega-

tive error). These particular judgments suggest that a loss ratio, in

such contexts, should be defined as some number greater than one--perhaps

two, but probably not three unless instructional time and cost are quite

unimportant.
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Indifference zone. An indifference zone is some range of universe

scores within which one is "indifferent" about false positive and false

negative errors. Let us identify the lower limit of this range as vrL

the upper limit as nH , and the range itself as (w L , T ). Suppose

an investigator is able to specify values for wL and irH such that,

for any examinee whose universe score is between wTL and 7H , there is

virtually no loss involved in declaring a true master to be a non-master

Qr in declaring a true non-master to be a master. In such a case the

interval (w , if ) may be viewed as an indifference zone. This rather
L H

direct approach to defining an indifference zone may or may not make

sense in a particular context.

Another approach involves the procedure for establishing a cutting

score discussed in Section 3. Specifically, consider again a(y) in

Equation 3.3, which is the standard deviation of y over replicated

studies, if each study involved all the items in the universe. It was

stated in Section 3 that y can serve as w and a 68% confidence inter-0

val for w0 can be viewed as extending from y - a(y) to y + a(y), approx-0

imately. This confidence interval (or something close to it) might

be viewed as an indifference zone. Consider, for example the synthetic

data treated in Section 2. For these data, y = .80; using Equation

3.3, 0(y) = .036; and the 68% confidence interval is (.76 to .84).

Since this interval indicates a degree of uncertainty about some "ideal"

value for a cutting score, it seems reasonable to assume that an investi-

gator might have little basis for being anything but indifferent about
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classification errors for examinees whose universe scores lie in the

interval (.76 tQ .84).

In considering either of the above approaches to establishing an

indifference zone, it needs to be recognized that these procedures

are not to be viewed as statistical excuses for being indifferent, in

the sense of uncaring, about individual examinees who have observed mean

scores close to wr . Rather, these procedures are to be viewed as aids0

in the process of establishing an indifference zone, which is a neces-

sary consideration for picking an advancement score using the table

discussed below.

Advancement Score Table

Given a test length, a loss ratio, and an indifference zone, Table

A.1 provides a specific advancement score, x , in terms of number of0

items correct. (To obtain the advancement score in terms of proportion

of items correct, one simply uses the relationship c = x /n.) The rows0 0

of Table A.1 are associated with different test lengths, ranging from

6 to 30 items; and the columns are associated with 20 indifference zones,

organized according to the mid-points of the zones, with mid-points

ranging from .65 to .90. For each row and column, there are three

tabled entries (separated by slashes) corresponding to advancement

scores associated with loss ratios of 1, 2, and 3, respectively.

To illustrate use of Table A.1, let us consider the following

judgments about test length, loss ratio, and indifference zone:
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(a) Test length. Let us assume that testing time is at a premium,

and the universe of items is rather narrow. Taking these two considera-

tions into account, it is judged that about n = 10 test items seems

reasonable,

(b) Loss ratio. Let us assume that the domain-referenced testing

context is one in which false positive errors are judged to be somewhat

more serious than false negative errors, and a loss ratio of about two

seems reasonable.

(c) Indifference zone. Let us suppose that it is decided to use

the results of a cutting score study in making judgemnts about an indif-

ference zone. Specifically, let us suppose that the results reported

in Section 2 are based on the appropriate universe of items. This study

suggests that an approximate 68% confidence interval for nt is (.76 to .84);
0

and it will be assumed that this confidence interval can serve as an

approximate indifference zone.

Now, given the above judgements, to pick an advancement score,

one uses the fifth row (n = 10) and second column(.75 to .85) of the

second page of Table A.l. The tabled entries corresponding to this

row and column are 9/9/9. Since all of these entries are the same

number, it is obvious that the advancement score is x = 9 or c = 9/10
0 0

= .90. To be specific, since the loss ratio has been defined as two,

the second entry is actually the advancement score for this illustratioft.

In the above example, note that the indifference zone (.75 to .85)

specified in the second column of the second page of Table A.1 is not
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exactly equal to the indifference zone of (.76 to .84), which was ini-

tially chosen. Any such slight disparity can be overlooked without

serious consequences, because, for the most part, the procedure used

to develop Table A.l is insensitive to small disparities in indifference

zones. Furthermore, it is not necessary that fr be exactly at the
0

midpoint of the indifference zone. Indeed, for reasons beyond the

scope of this handbook, it is sufficient that i0 be somewhere within
0

the indifference zone.

Table A.l indicates (and the above example illustrates) that this

procedure for choosing an advancement score is also relatively insen-

sitive to small changes in loss ratio. Indeed, for any specific test

length and indifference zone in Table A.1, the suggested advancement

scores differ by at most, one correct item.

The above points about "insensitivity" have been made to highlight

the fact that this procedure for choosing an advancement score does not

necessitate arguing about minute differences of opinion with respect to

an appropriate indifference zone or loss ratio--a reasoned consideration

of these issues is sufficient for the procedure.
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5. Errors of Measurement,

Errors of Classification, and

Inferences about an Examinee's Universe Score

Sections 2, 3, and 4 have considered issues that are addressed prior

to making any decision about an examinee. Let us now assume that the

issues discussed in Sections 2, 3, and 4 have been addressed, a domain-

referenced test of n items has been administered to a group of examinees,

and each examinee's score on the test has been determined. In this section,

consideration is given to the precision, or quality, of certain statements,

or decisions, that might be made about an examinee. To address these

issues, the only examinee datum that will be employed is the examinee's

test score. To simplify notation in this section, usually the examinee's

number of items correct will be denoted x, the examinee's proportion of

items correct will be denoted x (rather than x ), and the examinee's

universe score will be denoted w (rather than ni). .

p

It cannot be emphasized enough that n is always unknown, and x is

only an estimate of 7. Consequently, there is always some degree of

uncertainty about any statement concerning i. For example, if x = .80,

one may say that it is "about" .80, but this statement clearly suggests

that 7r and x may be different, and perhaps dramatically different.

This difference between x and Tr is called an error of measurement.

Furthermore, since x is an imperfect estimate of n, mastery/non-

mastery decisions based on x (or x) may be incorrect, and an error of
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classification may be made. This issue was introduced in the previous

section in the context of specifying a loss ratio. In this section,

errors of classification are considered in more detail, from the perspec-

tive of decisions about examinees.

It needs to be recognized that, since n is unknown, one cannot

V i specify whether or not a classification error has been made for an

individual examinee; nor, can one specify a particular value for an

individual examinee's error of measurement. However, given n and x

(or x), it is possible to make statements about the probability of

correct and incorrect decisions, and about likely values of w. Pro-

cedures for doing so are described and illustrated in this section,

after a more detailed consideration of errors of measurement and clas-

sification.
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Errors of Measurement and Classification.

Recall that an examinee's universe score is the porportion of items,

n, that the examinee would get correct if the examinee were ad~ministered

all items in the universe. Suppose an examinee takes a domain-referenced

test with n = 10 items and gets x = 8 items correct. It should be intui-

tively obvious that this does not necessarily mean that the examinee's

universe score is x = x/n = 8/10 = .80. After all, the examinee was tested

with 10 items, only; and it is to be expected that x = .80 is an imperfect

estimate of the examinee's universe score. This imperfection in measure-

ment is called measurement error. Specifically, measurement error is the

difference between an exmaminee's test score (expressed as a proportion of

items correct, x) and the examinee's universe score:

A =x- r

Note the use of the symbol A to designate measurement error. Clearly,

A can be either positive or negative, as well as being either large or

small.

it is evident from the definition of A that a cutting score, w 0
0

* plays no role in considerations regarding error of measurement. However,

for mastery/non-mastery decisions a cutting score, no , is involved; and for

such decisions, an error of classification may be made in addition to an

error of measurement. As noted in Section 4, there are two types of errors

of classification:
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(a) a false positive error (f+) occurs if an examinee is declared a

master (x > xo) when the examinee's universe score is below fo; and

(b) a false negative error (f-) occurs if an examinee is declared

a non-master (x < x ) when the examinee's universe score is at or above n1
0 0

These two possible errors of classification are represented in Table 5.1

' , along with the two possible correct decisions--namely, passing an examinee

who has a universe score at or above g (c+), and failing an examinee who0

has a universe score below r (c-).

To better a~preciate errors of measurement and classification, consider

Figure 5.1 in whi& it is assumed that n = .80, n = 10, and c = .90. For
0 0

12 pairs of values for x and n, Figure 5.1 represents the resulting error

of measurement and error of classification or correct decision. As illus-

trated in Figure 5.1:

(a) a false positive decision implies that a positive error of measure-

ment (x > f) is involved (see lines G, H, and I in Figure 5.1);

(b) a false negative decision implies that a negative error of mea-

surement (x < w) is involved (see lines J, K, and L in Figure 5.1); and

(c) even when a correct (positive or negative) decision is made, an

error of measurement (positive or negative) may be involved (see lines A-F

in Figure 5.1).

In short, the occurrence of an error of measurement does not neces-

sarily mean that an error of classification will be made; however, an error

of classification is always associated with an error of measurement, and
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Table 5.1

Correct Mastery/Non-Mastery Decisions and

Errors of Classification

Universe Score
Observed
Score <T>11

0 ~0

x < x Correct Negative False Negativeo

(Fail) Decision (c-) Error (f-)

x > x False Pcsitive Correct Positive

(Pass) Error (f+) Decision (c+)

Note. The symbol > means "greater than," the symbol > means

"greater than or equal to," the symbol < means "less than," and

the symbol < means "less than or equal to."
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frequently a rather large error of measurement. Indeed, errors f- clas-

sification arise because errors of measurement are involved. This is one

reason why it is highly advisable to pay attention to issues surrounding

errors of measurement--even if the principal focus of domain-referenced

testing is mastery/non-mastery decisions.

* It should be noted also that, if an error of classification is made,

it is not correct to describe the error of classification as being either

large or small--such an error is either made or it is not made, nothing

more. For example lines G and I in Figure 5.1 both represent false posi-

tive classifications errors, and line G does not represent a larger clas-

sification error than line I. Rather, line G represents a larger error

of measurement than line I.

It needs to be recognized that, since an individual examinee's uni-

verse score is unknown, we cannot directly determine the error of measure-

ment for an individual examinee. For the same reason, it is impossible

to say, for certain, whether or not a classification error has been made

for an individual examinee. However, given n and x (or x) it is possible

to make statements about: (a) probabilities associated with correct and

incorrect decisions; and (b) likely values for n. Procedures for doing so

are treated in the next two parts of this section.

Probabilities of Correct and Incorrect Decisions

Since one cannot say, for certain, whether or not a classification

error has been made for an individual examinee, it is reasonable to ask,

"How probable is it that an examinee with a score of x (or x) on an n-item
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test has been misclassfied?" Technically, there are many answers to this

question, depending on the assumptions one is willing to make. The approach

taken here to answering this question involves using Table A.2 which was

developed under very simple assumptions (see Appendix B). Roughly, speak-

ing, these assumptions imply that all we know about an examinee is the

examinee's test score, and the fact that the examinee took a test consist-

ing of a sample of n items from a large universe of items.

Table 5.2 provides a step-by-step procedure, with examples, for deter-

mining probabilities associated with correct and incorrect decisions.

This procedure involves nothing more complicated than identifying an entry

in Table A.2 and possibly subtracting it from 100. Note that, in this

handbook, a probability is usually identified and discussed as a percent

ranging from 0 to 100. This convention has been adopted to avoid confus-

ing a statement about a probability with a statement about an examinee's

universe score (w) or observed mean score (x), both of which range from

0 to 1.

It is suggested that, whenever mastery/non-mastery decisions are to

be made, the investigator examine the probabilities in Table 5.2--at least

the probabilities of incorrect decisions for examinees near the cutting

score. For example, using the procedure in Table 5.2 with n = 10,

I%= .80, and c = .90,

Prob U-) = 5% if x = 6,

Prob (f-) = 16% if x = 7,

Prob (f-) = 38% if x = 8,

Prob (f+) = 32% if x = 9, and

Prob (f+) = 9% if x = 10.
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Given such results, an investigator might decide that, when x = 8 or 9

the probability of an incorrect decision is unacceptably large. If so,

the investigator might consider retesting examinees with scores of 8 or 9

using a different sample of items.

Suppose, for example that an examinee got 8 out of 10 items correct,

initially, and 10 out of 10 items correct on a retest. The cutting

score is still w = .80; but, over both tests,
0

x = 8 + 10 = 18 and n = 10+10= 20.

To make a decision about this examinee, the investigator must recognize

that the effective test length for this examinee is now n = 20; and, con-

sequently, a new value for the advancement score, x , must be determined

using the procedure discussed in Section 4. Suppose that x turns out to0

be 17 (which is the value of x when the loss ratio is two and the indif-
0

ference zone is .75 to .85). Since x = 18 is greater than x = 17, the0

examinee should be advanced; and Table A.2 indicates that, under these

circumstances, the probability of a false positive error is 18%.

The probabilities of correct and incorrect decisions resulting from the

procedure outlined in Table 5.2 do not depend on having examinee scores

on a specific test; rather, these probabilities are for any test consis-

ting of a sample of 10 items from a very large universe. It follows that

an investigator might consider making a decision about test length based

on an examination of probabilities of incorrect decisions, for tests of

different length. In Section 6 a closely related issue is treated in

detail.
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Intervals for an Examinee's Universe Score

Even though it is impossible to specify a numerical value for error

of measurement for an individual examinee, it is possible to make state-

ments about probable values of 7r, given n and x (or x). More specifi-

cally, it is possible to determine:

(a) the probability that it is between two particular values

(nt and t2) specified by the investigator; and

(b) an interval (or range of values) for n such that the investi-

gator can say with P% certainty that the examinee's universe

score is within the interval.

A procedure for determining the probability referenced in (a), above,

and the interval referenced in (b), above, are provided in Table 5.3.

To be techically correct, we should not speak about the probability or the

interval because there are many such probabilities and intervals, depend-

ing on the assumptions one is willing to make. Since the procedures out-

lined in Table 5.3 involve a simple application of Table A.2, the assump-

tions for this procedure are those involved in generating Table A.2 (see

previous discussion of Table A.2 and Appendix B).

It should be noted that (a) and (b), above, answer different questions.

Specifically, (a) answers the question:

"Given n, x, and two investigator-specified values (i and n2),

what is the probability that iT is between Tit and n2? '1

For example, using the procedure in Table 5.3, when n = I0, x = 8,

T1 - .75, and w 2 = .85, there is a 32% probability that v is between .75

and .85.
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By contrast, (b) answers the question:

"Given n, x, and some desired degree of certainty, (P%), what

is a range of values which probably includes 7y?"

For example, given n = 10 and x = 8, Table A.2 reports that:

(1) with 67% certainty n is between .67 and .90;

(2) with 80% certainty 7 is between .62 and .92; and

(3) with 90% certainty 7r is between .56 and .94.

Note that if one wants to have a greater degree of certainty about the

range within which an examinee's universe score probably lies, then one

must tolerate a wider interval. For example, the interval (.56, .94) for

90% certainty is quite a bit wider than the interval (.67, .90) for 67%

certainty.

Also, given x and some desired degree of certainty, the width of an

interval decreases as n increases. For example, given n 20 and x = 16,

x = .80 and from Table A.2 a 67% interval is (.71, .87). This interval

is shorter than the corresponding interval (.67, .90) for n = 10 and x = 8.

In this sense one can say that long tests are better than short tests, or,

more specifically, longer tests are generally associated with a smaller

average error of measurement for examinees. This issue of test length

and its relationship with errors of measurement is treated in detail in

Section 6.

The intervals reported in Table A.2 are sometimes described as cred-

ibility intervals. Specifically, Table A.2 reports 67, 80, and 90 percent

Noo
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credibility intervals associated with observed mean scores of x > .50,

for test lengths ranging from 5 to 30 items. Similar results can be ob-

tained for other intervals, other test lengths, and/or other observed mean

scores using the procedure outlined in Table 5.4. Actually, an interval

obtained using the procedure in Table 5.4 is called a confidence interval

rather than credibility interval, and the interpretation of a confidence

interval is slightly different from the interpretation of a credibility

interval. However, for most practical purposes they can be interpreted

in about the same way.

As indicated by the example in Table 5.4, one can say with about

66 percent confidence that an examinee with an observed mean score of

.75 on a 20-item test probabily has a universe score between .65 and .85.

By comparison, consider the "corresponding" 67% credibility interval provided

in Table A.2. This credibility interval extends from .65 to .83. Clearly, the

two intervals are quite close, but not exactly the same. In general, it

is recommended that the credibility intervals in Table A.2 be used when-

ever possible, and that the procedure in Table 5.4 be used when Table A.2

does not apply. For example, Table A.2 does not provide 95 percent inter-

vals, but the procedure in Table 5.4 can be used to obtain such intervals.

(Note, however, that the procedure in Table 5.4 does not apply if

x = 0 or 1; and this procedure involves a normality assumption thatp

becomes less tenable as x approaches either 0 or 1.)P

In this author's opinion, in domain-referenced testing, it is usually

advisable to determine credibility or confidence intervals for examinee
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universe scores--at least those examinees about whom important decisions

are to be made. If nothing else, such intervals are usually very reveal-

ing indicators of the amount of measurement error possibly involved in

using x as if it were n. If an investigator feels that a specific inter-

val is too broad for a specific decision, then the investigator might con-

sider retesting the examinee.

Suppose, for example, that an examinee got 8 out of 10 items correct,

initially, with a 67% credibility interval for 7t extending from .67 to 90.

If the examinee were retested and got 10 out of 10 items correct, then for

the combined tests n = 20, x = 18, and a 67% credibility interval extends

from .82 to 95. This latter interval is considerably narrower than the

former one; and, of course, the additional information supplied by the

retest suggests that the examinee's universe score is probably higher

than originally expected.



0. (Grotip-Base( Cocfficients ol Aq reement and

Measures of Error

Section 5 considered errors of measurement and errors of classifi-

cation based on an individual examinee's score on a test. This section,

considers issues involving group performance on a test. Specifically,

the principal statistics to be discussed are indicated in Table 6.1.

The statistics 1 - p and a2 (A) in Table 6.1 are closely related

to errors of classification and errors of measurement, respectively.

Specifically, 1 - p can be interpreted as the probability of an incon-

sistent decision; and a2 (A) can be interpreted as the average value of

the squared errors of measurement for examinees. As such, these statis-

tics provide information about errors for a group of examinees, as opposed

to an individual examinee.

The other statistics in Table 6.1 are called agreement coefficients

in this handbook. Each of them has a value somewhere between 0 and 1,

with higher values indicating greater degrees of agreement than lower

values. The notion of "agreement" reflected by these coefficients in-

volves considering what would happen (hypothetically) if examinees were

administered many domain-referenced tests, with each test consisting of

a different sample of n items from the universe. For a given test length

(n), a high value for an agreement coefficient suggests that there would

be a high degree of consistency in certain scores on these different

tests. For example, if we knew that most persons classified as masters

on one test would be classified as masters on most other tests, too,

then one type of agreement would be relatively high. Although the above

conceptual explanation of agreement coefficients rests on considering
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Table 6.1

Loss Functions, Agreement Coefficients, and Errors

Based on Group Performance on a Test

Type Agreement Coefficients
of Not Corrected Corrected
Loss For Chance For Chance Errors

Threshold p Kappa 1 - Po

Squared Error ((c 0 02(A)

• 0
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multiple tests, in practice these coefficients can be estimated usinq a

single test, only; and in this handbook such single-test estimates are

the only ones given detailed consideration.

The statistics in Table 6.1 can be classified into two categories

r* based on the type of loss function involved in defining them. These

two loss functions are called "threshold" loss and "squared error" loss.

The subject of loss functions, per se, is a highly technical consider-

ation that will not be treated in great detail here. For present pur-

poses, it is sufficient to know that (a) a threshold loss function

involves consideration of errors of classification, assumes that all false

positive errors are equally serious, and assumes that all false negative

errors are equally serious; and (b) a squared error loss function in

domain-referenced testing involves consideration of errors of measurement

and assumes that the seriousness of an error depends on (among other

things) the squared distance between an examinee's observed and universe

scores. Later, more will be said about these two loss functions; for now

the reader should simply recognize that these two loss functions involve

different approaches to addressing similar types of issues.

To develop some further understanding of the statistics in Table 6.1,

suppose that test scores were available for a group of examinees on two

forms of a domain-referenced test. Under this circumstance, the threshold

loss coefficient denoted p in Table 6.1 would beo

Proportion of examinees classified as 1
P0 [masters on both forms

Proportion of examinees classified

as non-masters on both forms

The coefficient p is, in effect, the proportion of examinees consistently

classified into the same category (mastery or non-mastery) on the two tests.
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It follows from the above paragraph that 1 - p is the proportion

of examinees who are inconsistently classified on the two tests (i.e.,

classified as a master on one form and a non-master on the other). This

proportion of inconsistent classifications is a group-based measure of

error in a threshold loss sense, when scores on two tests are available.

The threshold loss coefficient p is not corrected for the expected
0

"chance" agreement if all examinees were randomly assigned to a mastery

or non-mastery status on each of the forms. The threshold-loss coefficient

corrected for such chance agreement is called Kappa, which is defined as:

Kappa = (po - pc)/( I - p),

where pc is chance agreement. In a sense, Kappa is a "pure" measure of

agreement attributable to the testing procedure, under threshold loss

assumptions.

The reader needs to be cautioned not to take the above "two-test"

analogy too literally. It is offered simply as an aid in thinking about

these statistics. Again, in this section the procedures treated involve

a single administration of a single form of a domain-referenced test.

As noted in Table 6.1, corresponding to each of these three threshold

loss statistics there is a statistic for squared error loss. For example,

o2 (A) is the average squared error of measurement for the population of

examinees, and the two agreement coefficients for squared error loss

involve a2(A). These squared error loss statistics provide a different

perspective on agreement (and disagreement).



Throughout this section all reference to a cutting score, n , is
0

replaced by consideration of c 0 x /n, the advancement score in terms of0 0

proportion of items correct. That is, in considering both squared error

loss and threshold loss, c is sometimes used when it might be argued that
0

ar should be involved. To do so, however, would necessitate considerable
0

complexities, no matter what loss function is involved.

Finally, it should be noted that some persons refer to the agreement

coefficients discussed in this section as "reliability" coefficients. The

word "reliability" is not used here principally to avoid unwarranted asso-

ciations between the coefficients in Table 6.1 and classical reliability

coefficients for norm-referenced tests. Given this caveat, however, much

of this section treats issues traditionally associated with measurement

consistency, or "reliability" considerations. (Also, in a sense mentioned

later, these issues have validity connotations for domain-referenced inter-

pretations.)

Squared Error Loss

Squared error loss statistics are conceptually more involved than

their threshold loss counterparts. Here, however, intital consideration is

given to squared error loss statistics because there are certain computa-

tional conveniences in proceeding in this order.

Suppose that an n = 10 item test were adminsitered to k = 25 exam-

inees; and suppose that after the items were scored, the resulting data

matrix was that given in Table 6.2. An entry in this data matrix is denoted

X. , the score (0 = incorrect, 1 = correct) for examinee p on item i.
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Table 6.2

Group Performance on a Test:

A Synthetic Data Set with Sample Statistics

Item

Person 1 2 3 4 5 6 7 8 9 10 x
P

1 1 1 1 1 1 1 1 1 1 1 1.0

2 1 1 1 1 1 1 1 1 1 1 1.0

3 1 1 1 1 1 1 1 1 1 1 1.0

4 1 1 1 1 1 1 1 1 1 1 1.0

5 1 1 1 1 1 1 1 1 1 1 1.0

6 1 1 1 1 1 1 1 1 1 1 1.0

7 1 1 1 1 1 1 1 1 1 1 1.0

8 1 1 0 1 1 1 1 1 1 1 .9

9 1 1 1 1 1 1 1 0 1 1 .9

10 1 1 1 0 1 1 1 1 1 1 .9

11 1 1 1 0 1 1 1 1 1 1 .9

12 1 1 1 1 1 1 1 1 1 0 .9

13 1 1 1 1 1 1 1 1 1 0 .9

14 1 0 1 1 1 1 0 1 1 1 .8

15 1 1 1 1 0 1 1 1 0 1 .8

16 1 1 1 1 0 1 1 0 1 1 .8

17 1 1 1 1 1 1 1 0 0 1 .8

18 1 1 1 1 1 1 1 1 0 0 .8

19 1 1 1 1 1 1 1 0 0 1 .8

20 0 0 1 1 1 0 1 1 1 1 .7

21 1 0 1 0 0 1 0 1 1 1 .6

22 1 0 1 1 1 1 0 1 0 0 .6

23 0 1 1 1 0 0 1 1 0 1 .6

24 1 0 1 1 1 1 0 0 0 0 .5

25 0 0 1 1 1 0 0 1 0 0 .4

x .88 .76 .96 .88 .84 .88 .80 .80 .68 .76 x = .824

s 2 (x , ) = .0058 IS 2 (x ) = .0282

1 I P
s I Ps(x.) = .076 I S(x ) = .168
I p
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Other statistics reported in Table 6.2 are as follows:

(a) x is the proportion of items that examinee p got correct;

2
(b) s (x ) and s(x ) are the variance and standard deviation,

p p

respectively, of the scores x ;p

(c) x. is the proportion of persons who got item i correct--i.e.,1

the item difficulty level discussed in Section 2;

(d) s2(x.) and s(x.) are the variance and standard deviation,1

respectively, of the item difficulty levels; and

(e) x is the mean proportion of items correct for persons, or,

equivalently, the mean difficulty level for items.

Using these sample statistics, Table 6.3 provides formulas, with

illustrative computations, for estimating agreement coefficients and

other quantities of interest involving squared error loss. (These

formulas are used here because they are as computationally simple to

use as any that can be derived; however, other more computationally

difficult formulas would be better in terms of revealing certain under-

lying theoretical issues.)

Universe score variance. It has been emphasized repeatedly in

previous sections that an examinee's observed score, x , is not neces-
p

sarily equal to his/her universe score, w . It follows that the vari-

pance of examinees' observed scores, s2(x ), is not necessarily equal
P

to the variance of examinees' universe scores, o2(7 ), which is abbrev-
p

iated 02 (i) in Table 6.3. Actually, o2(5) is almost always less than
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thf- obsorved score variance. This fact is not immediately evident from

Equation 6.1 in Table 6.3; but the computation section of Table 6.3

shows that 02(7j) = .0165, a value considerably smaller than s2 (x ) = .0282.
p

Note that the square root of a2 (jr) is simply the standard deviation of

examinee universe scores, which is a2 (7) = .129 for the synthetic data.

Error variance. Recall from Section 5 that error of measurement

is defined as the difference between an examinee's observed and universe

scores:

* A = -7
p p p

If we were to square these differences for all examinees, and then get

the average of these squared differences, we would obtain o2(A). Of

course, ip is never known exactly, so neither is Ap; and, consequently,

92(A) cannot be obtained directly by averaging the squared values of

A . However, one can estimate o2 (A) using Equation 6.2 in Table 6.3,p

and the square root of this value is an estimate of the standard devia-

tion of examinee errors of measurement. For the data in Table 6.2,

Table 6.3 shows that o2 (A) = .0130 and o(A) = .114. It is not immed-

iately evident from Table 6.3, but o2 (A) depends upon the variance

of item difficulty levels, among other things. In general, the smaller

the variance of item diffiulty levels, the smaller the value of a2(A).
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Agreement coefficient not corrected for chance. The above dis-

cussion of universe score variance and error variance makes no ref-

erence to mastery/non-mastery decisions. When such decisions are to

be made, the advancement score plays a role in the definition of an

agreement coefficient not corrected for chance, although error variance

is still a2 (A). This agreement coefficient is defined as:

a2 (r) + (1-c2

I(c
0 a 2 (7) + (?j - c )2 + 02(A)

0

where c = x /n is the advancement score in terms of proportion of items0 0O

correct; and p is the mean score over the universe of items and the

population of persons. As such, V has similarities with x, but is not

identical to it. The above definition is rather difficult to use directly

to estimate 0(c ), so a simpler formula is provided by Equation 6.3

in Table 6.3.

Note that Equation 6.3 depends upon (x - c )2, the squared dif-

* ference between x and the advancement score. For the synthetic data

with x = .824 and c = 9/10 = .9, Table 6.3 shows that 0(.9) .62.

One might ask, however, what would be the value of 0(c ) if x actually

equaled c in Equation 6.3? The answer is provided by Equation 6.4,0

which is also identified as KR-21. As discussed later, KR-21 also

plays an important role in estimating threshold loss agreement coeffi-

cients. For the synthetic data KR-21 = .54, and this is the smallest

value that Equation 6.3 can have for these data--no matter what the

advancement score actually is.
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Agreement coefficient corrected for chance. The agreement coef-

ticient corrected for chance, which is denoted P, is easily obtained

using the values of 02 (t) and a2(6) in Equation 6.5 in Table 6.3. For

the synthetic data, 0 = .56, a value very close to KR-21 = .54. Indeed,

0 and KR-21 almost always have very similar values. This occurs prin-

cipally because neither one of them depends on chance agreement, which

is technically (V - c )2 for squared error loss.
0

Interpreting agreement coefficients. Agreement coefficients (and

their reliability counterparts) are discussed and used extensively

in educational measurement--perhaps too extensively! However,

they are frequently difficult to interpret correctly, no matter what

loss function is involved. For this reason, whatever loss function is

involved, the following characteristics of such coefficients should

be kept in mind

(a) an agreement coefficient generally ranges from 0 to 1, but

a value of ,say, .80 is not necessarily "twice as good" as a value of

.40;

(b) when most examinees have observed scores close to the advance-

ment score, an agreement coefficient not corrected for chance will be

smaller than when most examinees have observed scores relatively far

from the advancement score;

(c) an agreement coefficient will tend to be small whenever uni-

verse score variance is small or error variance is large (even if the

coefficient is based on threshold loss);
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(d) an agreement coefficient not corrected for chance reflects

the quality (or consistency) of decisions made about examinees, whereas

an agreement coefficient corrected for chance reflects the contribution

of the test to the quality of -uch decisions. This is another perspective

on the fact that a coefficient corrected for chance is smaller than its

not-corrected-for-chance counterpart.

Threshold Loss

In the introduction to this section it was stated that a threshold

loss function assumes that all false negative errors are equally serious,

and all false positive errors are equally serious.

To clarify this point let us suppose that the test length is n = 10,

and c = f = .90. Obviously, an examinee will not be advanced if he/she0 0

gets 0, 1, 2, . ., 8 items correct. Now, it is almost certain that

some of these examinees will be falsely classified as non-masters,

because it is likely that some of these examinees have universe scores

at or above .90. (Of course, one never knows which examinees are falsely

declared to be non-masters). For threshold loss it is assumed that any

such false negative error is as serious as any other such error, no

matter what the examinee's unvierse score actually is; e.g., failing

an examinee with a universe score of 7 = .91 is as serious an error

a3 failing an examinee with a universe score of w = 1.00.

Also, the threshold loss function involves assuming that all false

positive errors are equally serious. For the above example, this means
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that passing an examinee with a universe score of, say, ni= .40 is as

serious an error as passing an examinee with a universe score of, say,

= .70.

It should be noted, however, that the threshold loss function

does not involve assuming that false positive errors are as serious as

false negative errors. That issue is a question of loss ratio--a sub-

ject treated in Section 4.

Table 6.4 describes and illustrates the steps required to obtain

the threshold loss coefficients p (not corrected for chance) and Kappa

(corrected for chance).

Step 1 simply involves recording results already obtained in Tables

6.2 and 6.3 for the synthetic data.

Step 2 involves computing a z-score based on the advancement score,

c . For these data z = .45 which means that the mean, x, is 45/100th's
0

of a standard deviation [s(x ) = .168] above the advancement score.~P

Step 3 involves determining what proportion of examinees would

have z-scores below z = .45 if examinee scores were normally distributed.

To obtain this result, Table A.3 in Appendix A is required. For

the synthetic data, this proportion is pz = .67.

Step 4 involves determining the proportion of examinees who would

have z-scores below z = .45 on each of two (hypothetical) n-item tests,

if examinee scores were normally distributed on both tests. For the

synthetic data p = .53. This step makes use of KR-21; and pzz will
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always be less than pz unless KR-21 actually equals one (a highly

unlikely occurrence).

Step 5 provides formulas for estimating po and Kappa using pz and

Pzz" For the synthetic data p0 = .72, and Kappa = .36. Again, Kappa

is smaller than p because PO reflects the proportion of examinees

consistently classified, while Kappa reflects the proportion of examinees

consistently classified over and beyond the proportion that would probab]."

be classified consistently by chance. [The proportion probably

classified consistently by chance is 1 - 2 p (1 - p ), which is .54

for the synthetic data.]

Finally, Step 6 in Table 6.4 provides an estimate of the propor-

tion of examinees who are inconsistently classified, i.e., the proportion

of errors involved in the decision-making process, in the sense of

threshold loss errors. For the synthetic data, this proportion is

.28.

The procedure for estimating p and Kappa in Table 6.4 is based on0I
the assumption that examinee universe scores are normally distributed.

In many domain-referenced testing contexts this assumption is probably

not true; but in most cases it is unlikely that violations of this

assumption will cause p and Kappa to be poorly estimated.

It is important to note that the statistics discussed above refer

to a group of examinees--not to individual examiness. None of these

statistics specify which examinees are consistently or inconsistently

classified.
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Also, for a different group of examinees, and/or a different sample

of items, the results would almost certainly differ. A similar state-

ment applies to the statistics for squared error loss in Table 6.3.

Such differences do not invalidate the statistics discussed above;

rather, such differences result because what we are really doing is

estimating quantities (called parameters) that we cannot observe

directly.

Test Length

Recall that a domain-referenced test is viewed as a sample of

items from a larger universe of items constructed to measure the con-

tent under consideration. Also recall that the examinee scores one

would ideally like to know are the examinee universe scores--i.e.,

examinee scores on the universe of items. These ideal scores can

never be obtained; but, in general, longer tests involve less error and

provide better estimates of examinee universe scores.

Therefore, one obvious question is, "How long should a test be?"

There can be no universal statistical answer to this question, because

any specific attempt to answer it eventually involves answering at

least one other question-namely, "How much error is one willing to

tolerate?" Clearly, the answer to this latter question necessitates

subjective judgment by a responsible person who is well-aware of all

aspects of the testing environment and the decisions to be made. Even

so, stat stics can help in making informed subjective judgments about

test length.
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It, jihrtij Ir two sJch statistics can be he]pful (a) a (A), the

stariddrl devution oif errors of measurement; and (b) 1 - po I the pro-

portion of examinees inconsistently classified. Table 6.5 shows how these

two statistics can be estimated for a hypothetical test of length n'.

Actually, only Equation 6.6 in Table 6.5 is required to estimate error

variance and its standard deviation; the other equations and steps are

required to obtain the proportion of examinees inconsistently classified.

Note that in Table 6.5 statistics for a test of length n' are

identified with a prime to distinguish them from the corresponding

statistics for the available n-item test. This distinction is dropped

in Table 6.6 which summarizes results for test lengths of n = 10, 15,

and 20. (The first row of Table 6.6 simply duplicates results already

reported in Tables 6.3 and 6.4 for the 10-item test.) From Table 6.6

it is clear that, as test length increases, both a(A) and 1 - po

decrease, but not very rapidly. In interpreting a(A) it is useful to

keep in mind that it can be no larger than 0.25 when each observed

item score takes on one of two possible values, as is the case for the

the synthetic data in Table 6.2.

The values of 0(A) and l - reported in Table 6.6 are based upon

synthetic data, but similar results can easily occur with real data.

Furthermore, the values of a(A) and 1 - p reported in Table 6.6 would
0

probably be judged rather large in most real contexts. Of course,

these values can be reduced by increasing test length beyond 20 items.
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Table 6.6

Illustrative Results for Changes

in Test Length Using the

Synthetic Data Example

n a(A) KR-21 I-P0

10 .11 .54 .28

15 .09 .64 .26

20 .08 .70 .25
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In beginning the above discussion of test length, it was pointed

out that data, per se, cannot specify what the test length should be,

but data can help in making an informed, but still subjective, judgment

about test length. In this regard, a(A) and 1 - p are helpful; but

it must be recognized that these two statistics provide different types

of information, and perhaps not equally useful information in a parti-

cular context. In the extreme, if an investigator were interested only

in minimizing classification errors, then 0(A) would provide irrelevant

information; and, conversely, if an investigator were interested only

in measurement error, then 1 - p would provide irrelevant information.

The perspective taken above is that in most realistic settings,

both types of error are likely to be of interest; and, therefore, con-

sideration has been given to both. Only in a specific context can a

judgment be made concerning which statistic is more appropriate in

considerations regarding test length. As discussed below, a similar

argument applies to agreement coefficients.

Other Considerations

Throughout this section, squared error loss and threshold loss

statistics have been treated in parallel. If, in a given context, an

investigator has an unambiguous basis for choosing one loss function
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over the other, then, of course, statistics involving the other loss

function become irrelevant. However, in many situations, choice of

a loss function may not be a completely unambiguous decision and,

indeed, it may be that neither loss function is ideal. In such situa-

tions, one approach is to examine statistics for both loss functions,

keeping in mind the different assumptions involved. In doing so, there

is some potential for confusion, but a theoretically better approach

would involve complexities far beyond the intended scope of this hand-

book.

In this regard, it should be kept in mind that it is not always the

case that a test is used to make a single type of decision. For example,

it could well be that a given test is sometimes used to make mastery/

non-mastery types of decisions assuming threshold loss; and, at other

times, the test is used simply to estimate examinee universe scores

assuming squared error loss. For such a test, both loss functions art

appropriate depending upon the use of the test. Indeed, in choosing

a loss function, the question of importance is not what constitutes

the test, but rather what constitutes the assumptions about the deci-

sions to be made using the test.

Sometimes a domain-referenced test is used solely for the purpose

of estimating examinee universe scores, without any consideration of

a cutting score. In such situations (assuming that squared error loss

is relevant), a(A) is still appropriate, as is the index (P given by
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Equation 6.5 in Table 6.3. In this sense, 4 may be viewed as a general-

IlA r()1,,;f. .ireC(mo(nt (.ffjC. i ient , or in rdex o1" deeridhib Iity, for a domain-

referenced test. Note that when a domain-referenced test is used solely

to estimate examinee universe scores, threshold loss statistics like

those treated above are meaningless.

In the introduction to this section, reference was made to the

fact that the agreement coefficients discussed above are sometimes

called reliability coefficients. Actually, these agreement coefficients

carry with them a connotation of validity, too, in the sense that they

involve consideration of the universe of items which is often the

principal "criterion" of interest, or the only criterion available.

Indeed, one perspective on measurement suggests that notions of reli-

ability and validity can be blended together into a consideration of the

extent to which observed scores are generalizable to universe scores.

This perspective seems especially relevant for domain-referenced inter-

pretations of test scores. In this sense, this section has considered

issues relevant to both reliability and validity.



Appendix A

Tables

Table A.1 is based on the Fhan6r-Wilcox-Huynh procedure referenced

in Appendix B. This table was developed using the IMSL (1979) subrou-

tine MDBETA.

The results reported in Table A.2 are based on the assumptions of

binomial likelihood and a uniform beta prior (see Appendix B). The

probabilities reported in Table A.2 were obtained using the IMSL (1979)

subroutine MDBETA: and the credibility intervals were obtained using

CADA (Isaacs and Novick, and Jackson (1904)], and some calculus.

Table A.3 was developed using the IMSL (1979) subroutines MDBNOR

and MDNOR.
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Appendix B

Technical Notes

These notes are provided for two reasons: (a) to cite appropriate

technical background and references for each section of the handbook;

and (b) to provide a limited amount of technical justification for

equations and/or procedures that are not specifically reported in readily

available references. However, there is no intent to cite all potentially

relevant references or to verify in detail all equations and/or proce-

dures.

In the body of this handbook, distinctions have been drawn only

very rarely between parameters and estimates of parameters. In these

technical notes such distinctions are made through the use of a "hat"

C) above unbiased estimates of parameters, which are denoted by Greek

letters. The reader should be careful not to confuse this use of a

"hat" with the use already made of this symbol in the body of the hand-

book. Specifically, the "hat" symbol is also used to distinguish be-

tween the sample variances s2 and ;2, where the former involves a denom-

inator of n and the latter involves a denominator of n - 1. (of course,

2 is an unbiased estimate of a parameter, but usually not a parameter

of interest, here.)

Section 1

Berk (1980) provides an edited book of readings on the subject of

domain-referenced (or criterion-referenced) measurements. Most of the
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topics treated in this handbook are also covered in Berk (1980). Also,

Hambleton, Swaminathan, Algina, and Coulson (1978) provide a technical re-

view of many issues treated here; Millman (1979) provides a brief review

written principally for practitioners; and Nitko (1980) reviews the many

varieties of criterion-referenced tests. It should be noted, however,

that there are clear differences between this handbook and the above

references--differences in emphasis and scope, as well as occasional

differences in perspective and approach.

Many introductory measurement textbooks give considerable attention

to defining objectives and tables of specifications. Recently, Ellis

and Wulfeck (1979) and Ellis, Wulfeck, and Fredericks (1979) have devel-

oped a task/content matrix for specific use in Navy training that in-

volves domain-referenced testing.

Section 2

Most introductory measurement textbooks provide detailed discussion

of item analysis procedures. Even though such discussions usually empha-

size norm-referenced testing, many of the guidelines typically suggested

are relevant for domain-referenced testing, too--with one noticeable

exception. In the opinion of this author, it is not generally a good

practice in domain-referenced testing to select items in a systematic

manner so as to obtain some pre-specified distribution of item difficulty

levels and/or discrimination indices. More specifically, this is not a

good practice if a test is to be used solely for the purpose of making

domain-referenced interpretations of test scores.



9)7

The discrimination index, B, discussed in Section 2 is treated by

Brennan (1972). More recently, Harris and Wilcox (1980) have commented

on this index.

Section 3

The procedure suggested in Section 3 for establishing a cutting score

is a slight modification of a procedure originally proposed by Angoff

(1971); and the developments involving o(y) are discussed by Brennan

and Lockwood (1980). The specific equations for o(y) in Table 3.2 can

be derived in the manner outlined below.

Let the probability assigned by rater r (r=l, 2, ... , t) to item i

(i=l, 2,..., m) for a set of m items be:

Yri A + A r + A. + A ri

where X is the grand mean and the AX are score effects as discussed by

Brennan and Lockwood (1980). It can be shown that inbiased estimates

of the variance of these score effects, in terms of the sample statis-

tics reported in Table 3.2, are:

o2 (ri) = [Z s(yr) - t ;2 (yi)]/(t-l) (Bl)
*1 rr

&2 (r) = s 2 (yr) - 2 (ri)/m (B2)

o2(i) = ;2(Yi) - o2 (ri)/t . (B3)
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For random samples of t raters and random samples of n items (n need

not equal m) an unbiased estimate of 2) is:

a2 (r) a2 (i) a2 (ri)
62 = + + (B4)

t n nt

Using Equations B1 to B3 in B4 we obtain

g2- ;2s

r I ri
= + , (B5)

n t mt(t-l) m(t-l)

where the bracketed term in Equation B5 is a2 (ri)/tm, which constitutes

the A-term defined in Table 3.2. The square root of Equation B5 is

Equation 3.2 in Table 3.2; and when n equals m, the square root of

Equation B5 is Equation 3.1 in Table 3.2.

Finally, as n - c, it is evident from Equation B4 that

2( ) = 2(r)/t

and using Equation B2,

2(y) = y2yr )/t _ $2(ri)/mt

= s2( y r )/t - A • (B6)

The square root of a2(y) in Equation B6 is Equation 3.3 in Table 3.2.
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Section 4

Table A.1, which is discussed in Section 4, results from applying

a minimax procedure presented in Huynh (1980, pp. 170-171). As such

this procedure is basically an extension of an approach suggested

by Fhaner (1974) and treated by Wilcox (1976). It should be noted,

however, that where Huynh talks about the loss ratio Q, this author

talks about l/Q; e.g., if false positive errors are twice as serious

as false negative errors, Huynh says the loss ratio is Q = .50, and in

Section 4 this loss ratio is identified as 1/.50 = 2. Of course, this

difference is simply a question of definition.

It is suggested in Section 4 that a confidence interval for io

from a cutting score study be considered as one possible way to define

an indifference zone. In doing so, it might be argued that one is

implicitly violating the assumption of 0 - 1 referral loss, which is

an assumption made by Huynh (1980) in his formulation of the minimax

procedure used to generate Table A.1. Another approach that might

be considered is to eliminate the indifference zone and use, y and

0(y) from a cutting score study to establish an ogive-shaped referral

success function, but this is considerably more complicated than the

approach taken in this handbook.

Section 5

With respect to technical issues, Section 5 is based principally on

Table A.2 which was developed under the assumptions of a binomial like-

lihood and a uniform beta prior distribution for ff (sometimes called

... .. ... .. ..
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a non-informative prior).

Specifically, an entry in the left-hand part of Table A.2 is:

Prob (ir > nin, x ) = 1 - I (x + 1, n - x - 1)
p p 7r p p

where x and ff are an examinee's observed and universe scores, respec-
p p

tively; and I (x + 1, n - x + 1) is the incomplete beta function with
7Tp p

parameters x +1 and n - x + 1. An entry in the right-hand part ofP 
p

Table A.2 is a Bayesian credibility interval for w under the assumption

of a uniform beta prior distribution. Technically, these intervals are

called highest density regions. (Some might quarrel with calling an

interval a highest density region when n = x.) Readers unfamiliar with

these Bayesian concepts can consult Novick and Jackson (1974, Chapter 5.)

A principal reason for using a beta prior here is that this assump-

tion results in a Bayesian credibility interval, which enables one to

make probability statements about the parameter 7t. By contrast, a

confidence interval allows one to make probability statements about

intervals covering 7t. Some might argue that in specific contexts, a

uniform beta prior is frequently unrealistic because a decision-maker

may know a great deal about an examinee. However, to assess "informative"

(i.e., non-uniform) beta priors in a decision-making process virtually

necessitates an interactive computing system such as CADA (Isaacs and

Novick, 1978). Furthermore, a decision-maker would need to justify the

specific "informative" prior chosen in each and every individual case.
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it 1 iou lI bith noted [h dl the Iharnr-Wjlcox-Ilhyiih al 'Irojach t(. e:tab-

lihhinq an advancement score, discussed in Section 4, involves consider-

ation of false positive and false negative errors, but a uniform beta

prior is not assumed in their approach. There is, therefore, a degree of

discontinuity between Sections 4 and 5. (For the purpose of establish-

ing an advancement score, a uniform beta prior assumption for a group

of examinees seems highly unrealistic to this author. One might argue

that an informative beta prior could be used, but, as indicated previously,

the process of doing so is far from trivial and clearly beyond the scope

of this handbook.)

Section 6

The theoretical framework used in Section 6 for integrating squared

error loss and threshold loss approaches is provided by Kane and Brennan

(1980). In addition, a considerable number of papers have been published

that involve consideration of one loss function or the other.

Concerning threshold loss, the following publications, among others,

are relevant: (a) Hambleton and Novick (1973) provided the first inte-

grated treatment of threshold loss and domain-referenced testing issues;

(b) Swaminathan, Hambleton, and Algina(1974) suggested using coefficient

Kappa; (c) Huynh (1976) and Subkoviak (1976) provided procedures for

estimating threshold loss coefficients based on a single test; and (d)

Subkoviak (1980) has reviewed much of the work in this area.

Concerning squared error loss, the following publications, among

others, are relevant: (a) using classical test theory assumptions,
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Livingston (1972) proposed a reliability-like coefficient for domain-

referenced tests; (b) using generalizability theory, Brennan and Kane

(1977 a, b) proposed two coefficients and a definition of error vari-

ance; (c) Brennan (a979a) has provided a computer program for performing

computations involving squared error loss considerations with domain-

referenced testing; and (d) Brennan (1980b) has reviewed much of the work

in this area.

The formulas in Table 6.3 are computationally easy to use, but they

are rather unusual expressions for estimates of their respective para-

maters. For this reason, the derivations of these expressions are

briefly outlined below.

Let the observed score for person p (p=l, 1, ... , k) on item i

(i=l, 2, ... , n) be:

Xp + W + + + Spi +

pi p 1 p1

where V is the grand mean in the population of persons and universe of

items; r v is the score effect for person p (r = j + wp ); p .' is the

score effect for item i; and nO .,% is the effect for the interactionpi

of person p and item i, which is confounded with experimental error.

(See Brennan and Kane, 1977 a, for more detail.)

It is well-known that an unbiased estimate of a2 (w) is:

&2(7)= [MS(p) - MS(pi)]/k (B7)

- ----
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where "MS" is "mean square"; and, it is relatively easy to show that,

for dichotomous data, Equation B6 can be expressed as Equation 6.1 in

Table 6.3. In a similar manner, it can be shown that

n[k s2(X) + s2(X ) - X(1-x)J
1 p

= (BB)

(n -1) (k- i)

n k [x(l-x) - s2(x )H
p 1

and = (B9)
(n -1) (k 1)

Now,

&2(A) = [02(a) + 02(7B)]/n ; (BlO)

and replacement of Equations B8 and B9 in B1O gives (after simpli-

fying terms) Equation 6.2 in Table 6.3.

Brennan and Kane (1977a) report that a consistent estimate of

$(c ) is:
0

x(l-x) - s2(X
0(c ) . .. (Bll)

O -i L;-o 2 + s2( p

[x(l-x) - S2(X- )]/(n-1)

= 10- (B12)
(X-C) 2 + s2 (x)0 p

The numerator of the term in braces is simply 02(A) given by Equation 6.2

in Table 6.3; consequently, Equation BlI can be expressed as Equation 6.3
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in Table 6.3. [Technically, a2(a) in Equation 6.3 should be ;2(A); but,

as previously stated, notational distinctions between parameters and esti-

mates are not made in the body of this handbook.] Equation 6.4 follows

from the fact that 0(c ) equals KR-21 if c = x (see Brennan, 1977). The

expression for KR-21 in Equation 6.3 may appear strange because it invol-

ves a2 (A), but it is easily verified that this expression is algebra-

ically identical to the well-known expression for KR-21.

The steps provided in Table 6.5 for obtaining estimates of thres-

hold lo3s coefficients of agreement are based on Huynh's (1976) normal

approxmimation procedure (see, also, Subkoviak, 1980), without using

an arcsine transformation (see Peng & Subkoviak, in press). In Table 6.5

reference is made to using the "closest" value in Table A.3; alternatively,

one can obtain better estimates using linear interpolation (see Huynh,

1978--different context, but same process). Huynh (1978) provides a

computer program for estimating threshold loss coefficients; as well

as tables of estimates of p , Kappa, and their standard errors for0

test lengths of 5 to 10 items (see, also, Huynh & Saunders, 1980).

Since the procedure outlined in Table 6.4 is based on a normal approx-

imation, estimates obtained using this procedure may be somewhat biased.

However, the degree of bias is likely to be small unless n is quite

small and/or c is quite close to one.
0
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In Table 6.5, Equation 6.6 is simply [62(8) + 2(i1)]/n'; and the

remaining equations and steps constitute a somewhat ad hoc approach for

using Huynh's normal approximation procedure to estimate the proportion

of inconcsistent decisions for a test of length n'.

Brennan and Kane (1977b) show that a2 (A) is algebraically equal to

the average of the squared values of o(A ) in Table 5.4. Note also that
p

a(A ) is identical to Lord's (1957) formula for the standard error of
p

measurement of an examinee's mean score.
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